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ABSTRACT
Reading the human mind has been a hot topic in the last
decades, and recent research in neuroscience has found evi-
dence on the possibility of decoding, from neuroimaging data,
how the human brain works. At the same time, the recent re-
discovery of deep learning combined to the large interest of
scientific community on generative methods has enabled the
generation of realistic images by learning a data distribution
from noise. The quality of generated images increases when
the input data conveys information on visual content of images.
Leveraging on these recent trends, in this paper we present an
approach for generating images using visually-evoked brain
signals recorded through an electroencephalograph (EEG).
More specifically, we recorded EEG data from several subjects
while observing images on a screen and tried to regenerate
the seen images. To achieve this goal, we developed a deep-
learning framework consisting of an LSTM stacked with a
generative method, which learns a more compact and noise-
free representation of EEG data and employs it to generate the
visual stimuli evoking specific brain responses.

Our Brain2Image approach was trained and tested using
EEG data from six subjects while they were looking at images
from 40 ImageNet classes. As generative models, we compared
variational autoencoders (VAE) and generative adversarial net-
works (GAN). The results show that, indeed, our approach is
able to generate an image drawn from the same distribution of
the shown images. Furthermore, GAN, despite generating less
realistic images, show better performance than VAE, especially
as concern sharpness. The obtained performance provides use-
ful hints on the fact that EEG contains patterns related to visual
content and that such patterns can be used to effectively gener-
ate images that are semantically coherent to the evoking visual
stimuli.
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1 INTRODUCTION
The idea of using the mind to control machines is not new
and has been long investigated, with fair success especially in
the brain computer interface research field [7, 8, 16, 24], which
mainly aims to decode simple patterns for direct-actuated con-
trol of machines. Beside BCI research, brain signals have been
also employed to drive the learning of intelligent systems for
emotion classification [14], medical tasks [1], etc. The common
factor between these approaches is that they all attempt to learn
a latent space to perform “simple” classification between few
mind states. While it is relatively easy and well-documented to
identify brain patterns related to audio stimuli or associated to
specific diseases, it is much more complex to understand what
happens in the human brain while performing visual tasks.
To this end, neurocognitive studies [12, 20, 21] have found
out that brain activity contains detectable patterns related to
visual stimuli categories [2, 3, 5, 25, 28] and, recently, in [26]
we have demonstrated that, indeed, brain signals recorded
through an electroencephalograph (EEG) can be used to un-
derstand what humans are seeing. However, although this
work reveals important aspects on brain functioning, it is not
really a reading-the-mind process as latent features are only
employed for automated classification and no means to “see”
what humans are seeing is considered.

In this paper we aim at closing the loop by adding a “gener-
ative layer”, which, starting from a latent space learned from
brain signals, generates a meaningful — and human-readable
— data representation of it, i.e., images semantically coherent with
the visual stimuli evoking those brain responses. More specifically,
in this paper we propose a Brain2Image framework consisting
of a discriminative model to learn latent features from brain sig-
nals and a generative model, which, starting from the learned
manifold, is able to generate visual samples from it. As discrim-
inative model we employed an LSTM and as generative model



we used and compared generative adversarial networks [6]
(GAN) and variational encoders [11] (VAE), which have al-
ready demonstrated great performance in generating realistic
images from an input data distribution. However, training such
generative methods, especially GANs, is rather unstable and
requires large data – often unavailable in experiments involv-
ing human subjects – and here we propose a training strategy
to overcome this limitation. The achieved results demonstrate
the effectiveness of our approach in generating visual samples
semantically coherent with visual stimuli.

The remainder of the paper is as follows: Sect. 2 reports on
the literature about methods attempting to reconstruct visual
images from neuroimaging data as well as the recent meth-
ods to generate realistic images starting from a specific data
distribution. Sect. 3 describes the proposed framework, from
data acquisition to the discriminative methods for EEG latent
variable learning to the generative models for image genera-
tion. Sect. 4 reports the achieved performance, while Sect. 5
draws conclusions on the further steps towards the ambitious
goal of understanding the cognitive processes behind visual
perception.

2 RELATED WORK
Research in neuroscience and neuroimaging [9] has shown
that human cognitive processes related to human perception
(and visual perception in particular) can be decoded through
non-invasive imaging techniques such as fMRI, EEG, MEG.
These studies have specifically found evidence about the pos-
sibility of decoding what humans are thinking from brain
activity. Simple statistical pattern recognition techniques have
been put in place to address the challenging goal of reading
the mind; while those methods mainly aim at identifying dif-
ferential brain activity patterns between cognitive states, our
work is different as it not only attempts to do that, but it also
tries to reconstruct the stimuli that have evoked specific brain
responses. One work that is close to ours in terms of objec-
tive is [19], where authors propose an approach to estimate
what humans are seeing using fMRI images. In particular,
the method aims at maximizing the posterior probability of
a certain visual stimulus, inducing a specific brain response
to belong to a data distribution learned from a large pool of
images [18]. In practice, fMRI showed great potential in this
mind-generative process, but its main limitation lies in the
experimental costs. This drawback is overcome by lower-cost
techniques such as electroencephalography, which provide a
higher temporal resolution compared to fMRI, but on the other
hand, suffer from lower spatial resolution and more noisy data,
which make the stimuli reconstruction process more difficult.

Nevertheless, the key aspects for a successful Brain2Image
process are: 1) the assumption the input brain signals retain
information about visual content; 2) the possibility to decode
and extract such visual information; 3) a generative model
able to use the decoded information and to learn a data dis-
tribution using limited and noisy signals. The first two issues
are addressed in the recent literature that has demonstrated

that visual stimuli elicit detectable changes in EEG brain re-
sponses [4, 17] and through recurrent neural networks able to
extract such information [26] for being used by machines.

Image generation from a latent feature space is what we
want to investigate in this paper. Image generation is an ac-
tive research topic and with the concomitant advent of deep
generative models, two successful and fundamentally diverse
methods attracted the attention of the researchers showing
promising results: Variational Autoencoders (VAE) [11] and
Generative Adversarial Networks (GAN) [6]. The former cate-
gory of methods follow a straightforward strategy: they use a
classical autoencoder (i.e. an encoder/ decoder scheme), but
add noise to the intermediate representation in order to im-
pose a Gaussian distribution. This way the decoder learns to
generate images not by compressing the input feature space
with a lossy non-linear filter (as in “vanilla” autoencoders),
but by following specific data feature distributions extracted
from the input. As a result, if the input contains one such distri-
bution (identified by the encoder), then the generator outputs
an image that contains a visual feature corresponding to that
distribution.

The latter category, GANs, adopt a completely different
concept: a generator network creates an image starting from
noise and a discriminator tries to identify whether an input
image is fake or real. The two modules practically engage in a
competition where the generator struggles to create realistic
images and the discriminator gets better in identifying forged
ones.

Both approaches present a number of advantages and disad-
vantages with respect to each other: VAEs are more intuitive,
can be trained easily, make it easier to produce the desired
result but are proner to overfitting with small datasets; besides,
the output images lack sharpness because of the noise intro-
duction during the intermediate representation. GANs are
more novel, they create very sharp-looking images but are un-
stable to train, especially under imposed conditions, although
further enhancements can help to alleviate, but not eliminate,
such problems [15, 23].

3 METHOD
The objective of this work is to create an approach able to
“translate” visually-evoked EEG signals into meaningful im-
ages, as shown in Fig. 1. As mentioned in the previous section,
the key aspect to achieve this goal is to be sure that EEG sig-
nals encode visual class discriminative information that can
be extracted by processing EEG data and this has been demon-
strated in [26].

Our Brain2Image approach consists of an encoder, which aims
at identifying a latent feature space for brain signal classifica-
tion, and a decoder, which turns the learned feature into images
using a deconvolution approach. In our case, the encoder con-
sists of an LSTM layer, while as decoder we employ both VAE
(see Fig. 2) and GAN (Fig. 3). The two generative approaches
share the same architecture, i.e.:



Figure 1: The objective of our work: a subject is looking at an image and at the same time its brain activity is captured by an
EEG. The acquired EEG signals are fed to our Brain2Image system and translated to an image semantically-similar (ideally
the same) to the one that the subject is looking at.

• EEG data acquisition: a human subject participating in
the experiment looks at images of various object classes
at a computer screen while their brain activity is recorded.

• EEG feature extraction: the acquired signals are pro-
cessed by an encoder, which is trained to output a feature
vector (EEG features), containing class-discriminative in-
formation.

• EEG-conditioned image generation: generative mod-
els (decoder in VAE or a generator–discriminator pair
in GAN) are trained to produce images from the EEG
feature vectors.

The data acquisition and EEG feature extraction parts have
been largely described in [26], so here are briefly overviewed,
while we mainly concentrate on the image generation part, i.e.,
how we can generate images starting from EEG signals.

3.1 EEG data acquisition
Our experiment involved six subjects who were shown images
of objects while EEG data was recorded. As visual stimuli,
we employed 50 images from 40 different ImageNet classes
(see Tab. 3 for a list of the employed classes) for a total of
2,000 images. Each image class was presented in batches of 25
seconds, followed by a 10 second black screen to “clear” the
visual pathway. The total duration of each experiment was
1,400 seconds (23 minutes and 20 seconds). After the EEG data
acquisition, we obtained 11,466 128-channel EEG sequences
(536 recordings were discarded because they were too short
or too altered to be included in the experiment).

A summary of the adopted experimental paradigm is shown
in Table 1.

Number of classes 40
Number of images per class 50
Total number of images 2,000
Visualization order Sequential
Time for each image 0.5 s
Pause time between classes 10 s
Number of sessions 4
Session running time 350 s
Total running time 1,400 s

Table 1: The parameters of the experimental protocol.

3.2 Learning EEG latent space
The first processing module of our approach consists of an en-
coder, which receives as input an EEG time series and provides
as output a more compact and class-discriminative feature vec-
tor. In [26] we tested several encoder models and the most
performing one is shown in Fig. 4. It consists of a standard
LSTM layer followed by a nonlinear layer. An input EEG se-
quence is fed into the LSTM layer, whose output at the final
time step goes into a fully-connected layer with a ReLU activa-
tion function. This simple architecture when stacked with a
40-way softmax layer yielded good performance — over 80%
classification accuracy.

3.3 Image Generation using EEG latent space
Image generation from a brain signal feature vector encoding
information about visual classes is the main contribution of
this paper. Thus, we have developed and compared two differ-
ent approaches: one based on a variational autoencoder and
the other one based on a generative adversarial network.

The VAE version of the Brain2Image generator is a traditional
variational autoencoder with the difference that the encoder
part is not a convolutional neural network, but the LSTM-based



Figure 2: Overview of the VAE-based architecture design of the proposed Brain2Image module driving the EEG-based image
generation approach, showing the constituting parts (encoder and decoder).

Figure 3: Overview of the GAN-based architecture design of the proposed Brain2Image module driving the EEG-based image
generation approach, showing the constituting parts (encoder, generator and discriminator).

neural network described in the previous section. To that net-
work, an additional fully-connected layer is added in order to
impose the learned feature vector to have a Gaussian distri-
bution as required by VAEs. The LSTM combined with this
last fully-connected layer represents our encoder E(z |x), which
receives as input a raw EEG sequence xI , with I indicating the
related image, and outputs a projection to a lower-dimension
latent multivariate Gaussian representation z (Fig. 4).

The decoder D(Î |z) is a network consisting of a two-layer
fully connected neural network with non-linear activation func-
tions (ReLU) followed by a cascade of deconvolutional layers
(more details are given in Sect. 4) that converts the latent dis-
tribution z produced by the encoder into an output image Î
(Fig. 5).

The objective of training is to minimize a loss function given
by the sum between the Kullback–Leibler divergence — dissim-
ilarity between the generated latent distribution and a Gauss-
ian one — and the image generation loss which represents
the accuracy of the image reconstruction (mean squared error
between the generated image Î and the target one I ):

LVAE = DKL[E(z |xI )| |D(Î |z)] +MSE(Î , I )

While as encoder we use a pre-trained LSTM for a brain
signal classification task, the decoder network is trained from
scratch: for each EEG sequence presented as the encoder’s
input, we use its output to train the network for generating the
image that the subject is looking at that precise moment.

The second method we developed for image generation
exploits generative adversarial networks. Unlike traditional
GANs, our approach generates an image sample using ran-
dom noise and a condition vector coming out from the encoder
network. More specifically, our GAN consists of a generator
and a discriminator. The generator G(z |y) maps random input
from a p(z) noise distribution and an EEG-based conditioning
vector y to a target image distribution pdata(x). The discrimina-
tor D(x |y) predicts, instead, the probability that a data point
belongs to the target distribution of conditioning vectors. Both
networks are trained simultaneously in a minimax settings:
the discriminator attempts to distinguish correctly — maxi-
mizing the the probability of assigning correct labels — “real”
data (from pdata(x)) from “fake” data (from pG (z |y)), while
the generator tries to make the discriminator fail by generat-
ing realistic images as if derived from data distribution. The
minimax function V (D,G) is the following:

min
G

max
D

V (D,G) =Ex ∈pdata (x) [logD (x |y)]+

Ez∈pz (z) [log (1 − D (G (z |y) |y))]



Figure 4: EEG feature encoder. The raw EEG signals are
fed to an LSTM network, where the temporal dynamics of
the input signals are modeled. Afterwards, the data is sent
to a fully connected layer with non-linear activation func-
tions (ReLU), whose output represents the EEG feature vec-
tor passed to either VAE or GAN.

Figure 5: The image decoder of our VAE architecture.

In terms of loss function, a true sample st = (xt ,yt ) con-
sisting of real data with correct condition and a fake sample
sf = (xf ,yf ) consisting of fake data with arbitrary condition,
the negative log-likelihood discriminator loss is:

LD = − logD (xt |yt ) − log
(
1 − D

(
xf |yf

))
(1)

while the generator loss, for an analogous sf sample, is:

LG = − logD
(
xf |yf

)
(2)

Fig. 6 shows our GAN architecture with both D andG being
convolutional networks.

As conditioning vector y we use the latent features learned
by our encoder. It is used — concatenated with the random
noise — both as input for the generator and appended to the
feature maps of the second-to-last convolutional layer of the
discriminator. Furthermore, given that we employ condition-
ing vectors for image generation, the generator needs to learn
the correct association between the data distribution and the
conditioning vectors. To simplify the learning dynamics, we
change the discriminator loss function, following the approach
in [22], by providing a real image with a wrong condition. Thus,
we train our discriminator using true samples st = (xt ,yt ) and
wrong samples sw1 = (xc ,yw ) and sw2 = (xw ,yw ), and compute
the loss as follows:

LD = − logD (xt |yt )

− log (1 − D (xc |yw ))

− log (1 − D (xw |yw ))

(3)

4 PERFORMANCE ANALYSIS
Performance analysis aimed at evaluating the accuracy of our
Brain2Image approach in generating accurate and realistic im-
ages resembling those evoking the recorded brain signals.

While it is relatively easy to assess image quality in a quali-
tative manner, quantitative assessment of image fidelity and
resemblance to real images is not trivial and not clearly defined.
One recent metric to test generative methods is employing the
Inception score [23], i.e., using the output of the Inception net-
work [27] to assess the resemblance of a generated image to
an object class. Even better, it also includes a metric for the
quality of a generated image by evaluating how easy it is for
the Inception network to classify it correctly.

For experimental evaluation, we split our EEG signal dataset
into training, validation and test sets, with respective fractions
80% (1,600 images), 10% (200), 10% (200). Splitting by images,
rather than by EEG signals (which, for each image, are as many
as the number of participant subjects), makes sure that the
signals generated by all subjects for a single image are not
spread over different splits.

4.1 VAE and GAN’s architectures
Adam gradient descent method [10] is used for training both ap-
proaches (learning rate initialized to 0.001), with mini-batches
of size 16. The encoder’s LSTM layer size is set to 128, as is the
number of the fully connected non linear output layer.

The VAE’s decoder and the GAN’s generator share the same
architecture, except from the input layer. In the VAE case, the
fully connected input layers of the decoder has 128 nodes
while in the GAN case, the generator’s input layer has 228
(100-dimensional random noise and 128- dimensional EEG
features) nodes. The models and training hyperparameters are
tuned on the validation set.

In both models’ generative parts (i.e., VAE’s decoder and
GAN’s generator), the input passes through 5 deconvolutional
layers: the first spatially upsamples the vector by four times,
while each of the others doubles the size at every step, so that
the output image size is 64×64. The number of features maps



Figure 6: GAN Architecture. The generator receives a feature vector, which is created by concatenating the encoded EEG
features (in yellow) — with random noise. The discriminator is trained from generated images and real images from the
training dataset to identify whether an input image is real or fake. EEG features are used also by the discriminator in order
to derive a decision about the correctness of the generated image with respect to the conditioning vector.

starts at 512 at the first layer, and is reduced by half for each
successive deconvolutional layer before the last one, which
generates a 3-channel (color) image.

In the GAN case, the discriminator is made up of four con-
volutional layers and two fully-connected layers. It takes as
input 64×64 images, and analogously halves the feature map
size at every convolutional step. After the final convolutional
layer, where the feature map size is 4×4 (to which the condition
vector is spatially appended), two fully-connected layers re-
duce the number of features to 1024 and 1, the latter being the
sigmoidal probability estimate on the input image/condition
pair. The number of feature maps in the convolutional layers
starts at 64 at the first layer, and is doubled at every layer before
the fully-connected ones, to a maximum of 512 feature maps
at the last convolutional layer. While VAE implicitly use the
latent features learned by the encoder, in the GAN case we
explicitly append conditioning vectors to the input noise. All
(de) convolutional layers in both models include batch nor-
malization modules and ReLU activation functions. All model
details are given in Tab. 2.

4.2 VAE and GAN’s training details
Deep-learning based generative models need a lot of data in
order to avoid overfitting. However, acquiring EEG data to
satisfy such data quantity needs is impractical, because of the
nature of the experiment. In fact, we tried to minimize the
time that subjects had to undergo the experiment because we
noted that after a while, brain signals showed alterations due
to subject tiredness and nervousness.

According to the data acquisition protocol discussed in Sec-
tion 3.1, only 50 images per class were presented during the
experiments, even though the ImageNet dataset contains about

Model VAE GAN

Component E DEC G D

Number of deconvolution layers 5 5 5 4
Initial number of feature maps 32 512 512 64
Kernel Size 4 × 4 4 × 4 4 × 4 4 × 4
Striding Size 2 × 2 2 × 2 2 × 2 2 × 2
Padding Size 1 × 1 1 × 1 1 × 1 1 × 1

Table 2: The employed models’s details. In the second row, E
stands for the VAE’s encoder (of the first training phase, see
Sec. 4.2), and DEC for the VAE’s decoder, G for the GAN’s
generator and D for the GAN’s discriminator.

1300 images per class. However, the unused images contained
visual features that could be exploited in the image generation
process, even if EEG data was not available. So, in order to use
all possible information and to avoid overfitting, we trained
the models in two stages:

(1) The models were initially pre-trained with images, for
which EEG data was not available. For the VAE, a mir-
rored version of the decoder was used as an encoder,
but with convolution layers instead of the deconvolution
ones. For the GAN, all condition vectors y were set to
the zero vector, and the loss term related to real images
and wrong conditions was ignored.

(2) The models were then trained (fine-tuned) with those
images for which EEG data was available. For the VAE,
the EEG feature encoder was used for the encoder part,
and only the additional fully-connected layer was trained
during this stage (i.e. the parameters of the EEG feature



encoder in Fig. 4 were frozen). Given the complexity and
instability of GAN training, we could not use one condi-
tion vector for each input EEG signals as this would have
turned out in the impossibility to get realistic images,
thus, as condition vector y associated to each image we
used the average of the EEG feature encoder’s output of
all images in the same class and of all subjects.

Furthermore, data augmentation was performed during
both stages by resizing images at 96×96 pixels, and extracting
random 64×64 (horizontally flipped with 50% chance).

4.3 Image generation: qualitative and
quantitative performance

Fig. 7 and 8 show samples generated, respectively, by VAE and
GAN for some of the 40 ImageNet visual classes. Differences
can be observed in the quality of the produced results. Indeed,
as expected, the GAN network managed to generate sharp -
although very artificial - images with respect to the VAE ones,
which, instead, was able to capture better basic distinguishing
patterns and to generate more realistic images. Thus, VAE was
better in representing the object structure but with much less
definition and sharpness. The results confirm that both models
are able to translate EEG features into meaningful images of
the appropriate image classes.

To quantitatively assess the performance of the two ap-
proaches in generating images from brain signals, we com-
puted the Inception score both globally (across all classes) and
on a per-class base. In the first case, we generated a sample of
50,000 images (1,250 per class); in the second case, we gener-
ated a sample of 50,000 images for each class, and computed
per-class Inception scores. The results achieved by VAE and
GAN are shown in Table 3. The results indicate that GAN
outperformed VAE in the Brain2Image task. However, both
methods yielded satisfactory results in converting raw EEG
signals into meaningful images. The performance achieved
by both methods are also inline with state-of-the-art methods,
which, to our knowledge, have been tested only on simpler
datasets than ImageNet such as CIFAR-10, on which the cur-
rent best published result is 8.07 [23]. While the performance is
not as high as those obtained on CIFAR-10, it should be noted
that: 1) the resolution of the generated images is higher than
CIFAR-10’s one (64×64 vs 32×32); 2) we attempt to generate
images from much more classes (40 vs 10 in CIFAR-10); 3) the
images available for each class is lower than the ones in CIFAR-
10 (1,200-1,300 in our case, whose only 50 images coming with
EEG data vs 6,000 in CIFAR-10); 4) image generation process
is driven by brain signals, which is true that they contain in-
formation about visual classes but such information is mixed
with a lot of noise, while traditional generative methods use
as conditioning vectors directly the labels of the image class.

Moreover, the Inception score does measure only the level
of realism of the generated images, whereas, our goal is to
translate brain signals evoked by visual stimuli into the cor-
responding images. To assess this capability, we employ the
generated image samples (by the two approaches) and com-
pute the class probability distribution of Inception, with the

softmax layer changed for a 40-class classification task. The cor-
rect classification rate when using VAE generate images was
0.35, while for GAN-generated images we obtain 0.43. Table 3
shows per-class correct classification rate. As expected, simi-
larly to the qualitative results, GAN outperformed VAE. This
may be explained with the fact that the initial layers of GAN
match better fine details and simple visual patterns, which
VAE is unable to reproduce adequately.

5 CONCLUDING REMARKS
In this paper, we propose an approach able to reconstruct
images seen by human subjects using only brain signals. In
particular, we developed a general deep-learning framework
that given input time series encoding information about vi-
sual classes is able to reverse them into images. We tested two
approaches: one using variational autoencoders and the other
one employing generative adversarial networks. The results
show that both approaches are able to generate images seman-
tically coherent with the visual stimuli evoking specific brain
signals. GAN, in general, outperform VAE, which, in turn, gen-
erate more realistic images that however lack fine details. Thus,
as future work, we aim at combining them as in [13]. We are
currently working also on acquiring fMRI data to complement
EEG data and provide the generative methods less noise and
more significant conditioning vectors. However, the results
achieved in this paper are highly satisfactory and represent an
important step forward the reading the mind goal.
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(a) Airliner

(b) Jack-o’-Lantern

(c) Panda

Figure 7: VAE results in terms of generated images

(a) Airliner

(b) Jack-o’-Lantern

(c) Panda

Figure 8: GAN results in terms of generated images



Generative method VAE GAN

Class IS IC IS IC

German shepherd (n02106662) 3.04 0.11 4.91 0.23
Egyptian cat (n02124075) 2.98 0.21 4.45 0.29
Lycaenid butterfly (n02281787) 4.44 0.34 5.03 0.37
Sorrel (n02389026) 2.91 0.37 5.86 0.62
Capuchin (n02492035) 4.89 0.39 4.99 0.41
Elephant (n02504458) 5.01 0.49 5.35 0.57
Panda (n02510455) 4.97 0.58 6.35 0.72
Anemone fish (n02607072) 5.11 0.46 6.11 0.81
Airliner (n02690373) 6.14 0.34 6.20 0.86
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